设α是欧氏空间V中的一个非零向量,α1,α2,···,αp是V中p个向量,满足
证明:
1)α1,α2,···,αp线性无关;
2)n维欧氏空间中最多有n+1个向量,使其两两夹角都大于π/2。
某被控制对象的动态方程
①设计状态反馈向量k,使得经状态反馈u=kx+r后,闭环系统在输入r=1(t)、x(0)=0时,响应的超调量为16.3%、过渡过程为7s(取5%误差带)。
②设x(0)=0,求经上述状态反馈后闭环系统在输入信号r=1(t)作用下的响应y(t)。
设α1,α2,···,αn是n维欧氏空向Rn的一组基。证明:
(1)若γ∈Rn,有(γ,αi)=0,i=1,2,...,n,则γ是零向量;
(2)若γ1,γ2∈Rn,使对Rn中任意向量α,均有<γ1,α>=<γ2,α>,那么γ1=γ2。
设f(x1,...,xn)=X'AX是一实二次型。已知有实n维向量X1,X2使证明:必存在实n维向量X0≠0,使X0'AX0=0。