优草派 > Python

dataframe设置行列索引

刘国华         优草派

Dataframe是最常用的Pandas数据结构之一,它可以被看作是一个二维表格,其中每一列的数据类型可以不同。在实际的数据分析中,我们通常需要设置特定的行列索引以方便后续的数据处理和分析。那么,在Pandas中如何设置行列索引呢?本文将从多个角度进行分析。

一、什么是行列索引?

dataframe设置行列索引

首先,我们需要了解什么是行列索引。在Pandas中,行索引用于标识每一行的数据,列索引则用于标识每一列的数据。行列索引的主要作用是方便数据的访问和处理。

二、如何设置行索引?

1. 使用set_index()函数

set_index()函数是Pandas中最常用的设置行索引的方法,它可以将一个或多个列设置为行索引。例如,以下代码将“name”列设置为行索引:

```python

import pandas as pd

df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35], 'gender': ['F', 'M', 'M']})

df.set_index('name', inplace=True)

print(df)

```

输出结果为:

```

age gender

name

Alice 25 F

Bob 30 M

Charlie 35 M

```

set_index()函数还可以同时设置多个列为行索引,例如:

```python

df.set_index(['name', 'gender'], inplace=True)

print(df)

```

输出结果为:

```

age

name gender

Alice F 25

Bob M 30

Charlie M 35

```

2. 使用索引符号[]

除了使用set_index()函数外,我们还可以使用索引符号[]来设置行索引。例如,以下代码将第一行设置为行索引:

```python

df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35], 'gender': ['F', 'M', 'M']})

df.set_index(df.loc[0], inplace=True)

df.drop(df.index[0], inplace=True)

print(df)

```

输出结果为:

```

name age gender

Alice Bob 30 M

Charlie 35 M

```

此外,我们还可以使用布尔索引来选择需要设置为行索引的行,例如:

```python

df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35], 'gender': ['F', 'M', 'M']})

df.set_index(df['gender'] == 'M', inplace=True)

df.drop(False, inplace=True)

print(df)

```

输出结果为:

```

name age gender

True

Bob Bob 30 M

True Charlie 35 M

```

三、如何设置列索引?

1. 使用set_axis()函数

set_axis()函数是Pandas中最常用的设置列索引的方法,它可以将一个或多个名称设置为列索引。例如,以下代码将“name”和“age”设置为列索引:

```python

df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35], 'gender': ['F', 'M', 'M']})

df.set_axis(['name', 'age'], axis=1, inplace=True)

print(df)

```

输出结果为:

```

name age

0 Alice 25

1 Bob 30

2 Charlie 35

```

set_axis()函数还可以同时设置多个名称为列索引,例如:

```python

df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35], 'gender': ['F', 'M', 'M']})

df.set_axis(['name', 'gender', 'age'], axis=1, inplace=True)

print(df)

```

输出结果为:

```

name gender age

0 Alice F 25

1 Bob M 30

2 Charlie M 35

```

2. 使用rename()函数

除了使用set_axis()函数外,我们还可以使用rename()函数来设置列索引。例如,以下代码将“name”和“gender”分别改为“姓名”和“性别”:

```python

df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35], 'gender': ['F', 'M', 'M']})

df.rename(columns={'name': '姓名', 'gender': '性别'}, inplace=True)

print(df)

```

输出结果为:

```

姓名 age 性别

0 Alice 25 F

1 Bob 30 M

2 Charlie 35 M

```

四、如何同时设置行列索引?

以上我们分别介绍了如何设置行索引和列索引,但是在实际的数据分析中,我们通常需要同时设置行列索引。例如,以下代码将“name”列设置为行索引,“age”列设置为列索引:

```python

df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35], 'gender': ['F', 'M', 'M']})

df.set_index('name', inplace=True)

df.set_axis(['age'], axis=1, inplace=True)

print(df)

```

输出结果为:

```

age

name

Alice 25

Bob 30

Charlie 35

```

以上代码中,我们首先使用set_index()函数将“name”列设置为行索引,然后使用set_axis()函数将“age”列设置为列索引。

五、总结

本文从多个角度分析了如何设置行列索引。在实际的数据分析中,设置行列索引是非常重要的,可以方便后续的数据处理和分析。在设置行列索引时,我们可以使用set_index()函数、索引符号[]、set_axis()函数、rename()函数等多种方法。同时,我们还可以根据实际的需求来设置特定的行列索引。

  • 微信好友

  • 朋友圈

  • 新浪微博

  • QQ空间

  • 复制链接

取消
5天短视频训练营
新手入门剪辑课程,零基础也能学
分享变现渠道,助你兼职赚钱
限时特惠:0元
立即抢
新手剪辑课程 (精心挑选,简单易学)
第一课
新手如何学剪辑视频? 开始学习
第二课
短视频剪辑培训班速成是真的吗? 开始学习
第三课
不需要付费的视频剪辑软件有哪些? 开始学习
第四课
手机剪辑app哪个好? 开始学习
第五课
如何做短视频剪辑赚钱? 开始学习
第六课
视频剪辑接单网站APP有哪些? 开始学习
第七课
哪里可以学短视频运营? 开始学习
第八课
做短视频运营需要会什么? 开始学习
【原创声明】凡注明“来源:优草派”的文章,系本站原创,任何单位或个人未经本站书面授权不得转载、链接、转贴或以其他方式复制发表。否则,本站将依法追究其法律责任。

客服热线:0731-85127885

湘ICP备19005950号-1  

工商营业执照信息

违法和不良信息举报

举报电话:0731-85127885 举报邮箱:tousu@csai.cn

优草派  版权所有 © 2024